Is There ‘Anther-Anther Interference’ within a Flower? Evidences from One-by-One Stamen Movement in an Insect-Pollinated Plant

نویسندگان

  • Ming-Xun Ren
  • Zhao-Jun Bu
چکیده

The selective pressure imposed by maximizing male fitness (pollen dispersal) in shaping floral structures is increasingly recognized and emphasized in current plant sciences. To maximize male fitness, many flowers bear a group of stamens with temporally separated anther dehiscence that prolongs presentation of pollen grains. Such an advantage, however, may come with a cost resulting from interference of pollen removal by the dehisced anthers. This interference between dehisced and dehiscing anthers has received little attention and few experimental tests to date. Here, using one-by-one stamen movement in the generalist-pollinated Parnassia palustris, we test this hypothesis by manipulation experiments in two years. Under natural conditions, the five fertile stamens in P. palustris flowers elongate their filaments individually, and anthers dehisce successively one-by-one. More importantly, the anther-dehisced stamen bends out of the floral center by filament deflexion before the next stamen's anther dehiscence. Experimental manipulations show that flowers with dehisced anther remaining at the floral center experience shorter (1/3-1/2 less) visit durations by pollen-collecting insects (mainly hoverflies and wasps) because these 'hungry' insects are discouraged by the scant and non-fresh pollen in the dehisced anther. Furthermore, the dehisced anther blocks the dehiscing anther's access to floral visitors, resulting in a nearly one third decrease in their contact frequency. As a result, pollen removal of the dehiscing anther decreases dramatically. These results provide the first direct experimental evidence that anther-anther interference is possible in a flower, and that the selection to reduce such interferences can be a strong force in floral evolution. We also propose that some other floral traits, usually interpreted as pollen dispensing mechanisms, may function, at least partially, as mechanisms to promote pollen dispersal by reducing interferences between dehisced and dehiscing anthers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slow stamen movement in a perennial herb decreases male–male and male–female interference

Approximately 80 % of angiosperm species produce hermaphroditic flowers, which face the problem of male-male sexual interference (one or more anthers gets in the way of disseminating pollen from other anthers) or male-female sexual interference (the pistil interferes with disseminating pollen from the anthers by preventing the anther from touching a pollinator, or the anther prevents pollinator...

متن کامل

Up and down: stamen movements in Ruta graveolens (Rutaceae) enhance both outcrossing and delayed selfing.

BACKGROUND AND AIMS Stamen movements directly determine pollen fates and mating patterns by altering positions of female and male organs. However, the implications of such movements in terms of pollination are not well understood. Recently, complex patterns of stamen movements have been identified in Loasaceae, Parnassiaceae, Rutaceae and Tropaeolaceae. In this study the stamen movements in Rut...

متن کامل

Anther development: basic principles and practical applications.

Male reproductive processes in flowering plants take place in the stamen (Esau, 1977). This sporophytic organ system contains diploid cells that undergo meiosis and produce haploid male spores, or microspores. Microspores divide mitotically and differentiate into multicellular male gametophytes, or pollen grains, that contain the sperm cells. Figures 1 and 2 show that the stamen consists of two...

متن کامل

Potential autonomous selfing in Gesneria citrina (Gesneriaceae), a specialized hummingbird pollinated species with variable expression of herkogamy.

Species with mixed mating systems often demonstrate variable expression of breeding system characteristics and thus represent the opportunity to understand the factors and mechanisms that promote both outcrossed and selfed seed production. Here, we investigate variation in levels of herkogamy (variation in stigma-anther separation distance) in a Puerto Rican population of hummingbird pollinated...

متن کامل

The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis.

The Arabidopsis thaliana floral homeotic gene AGAMOUS (AG) plays a central role in reproductive organ (stamen and carpel) development. AG RNA is expressed in the center of floral primordia from a time prior to the initiation of stamen and carpel primordia until late in flower development. While early AG expression acts in specification of stamens and carpels, the role, if any, of continued AG e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014